Designing “Top to Bottom™
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This is ONLY a suggestion/ one of possible designs
Maria Zontak
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Very partial code:

.. //many things like command line arguments handling happened before

Template emailTemplate = new Template (template filename) ;

PassengersInfo passInfo = new PassengerInfo(csv filename) ;

IEvaluatorContainer ec = new EvaluatorContainer(); //will contain all sources of info
ec.push (new DateEvaluator());

ec.push (new KeyValueEvaluator (SOURCE CITY PLACEHOLDER, FlightInfo.getSourceCity())):
ec.push (new KeyValueEvaluator (DESTIN CITY PLACEHOLDER, FlightInfo.getDestinationCity()));
ec.push (new KeyValueEvaluator (EVENT PLACEHOLDER, FlightInfo.getEvent())):

List<String> headers = passInfo.getHeaders();
while( passInfo.hasNextPassenger ()) {
ec.push (new KeyValueEvaluator (headers, passInfo.nextPassenger()):;
EFmail newEmail = emailTemplate.toEmail (ec);
ec.pop(); //remove evaluator that was added last
// send/save your newEmail



