Designing “Top to Bottom™
Assignment 3

This is ONLY a suggestion/ one of possible designs
Maria Zontak

Dependency diagram between MAJOR

Some interfaces were

modules, there should/can be more: CSVParser omitted here.
You should ALWAYS have
IOLibrary interface for any major
S type
—
Template Passengersinfo FlightInfo
templateText
2lEEE eIt <interface>
Evaluator
toEmail (Evaluator evaluator) | R 7Y 4
Interface | String getValue(String placeholder)
dependency. .---==" v ? Y — L
————————— ! -~----~“=—
—— <interface> KeyValueEvaluator implements Evaluator

DateEvaluator implements Evaluator

|EvaluatorContainer extends Evaluator

push(Evaluator newEvaluator)

pop()
%

EvaluatorContainer implements IEvaluatorContainer

Dequeue<Evaluator> evaluators

Very partial code:

.. //many things like command line arguments handling happened before

Template emailTemplate = new Template (template filename) ;

PassengersInfo passInfo = new PassengerInfo(csv filename) ;

IEvaluatorContainer ec = new EvaluatorContainer(); //will contain all sources of info
ec.push (new DateEvaluator());

ec.push (new KeyValueEvaluator (SOURCE CITY PLACEHOLDER, FlightInfo.getSourceCity())):
ec.push (new KeyValueEvaluator (DESTIN CITY PLACEHOLDER, FlightInfo.getDestinationCity()));
ec.push (new KeyValueEvaluator (EVENT PLACEHOLDER, FlightInfo.getEvent())):

List<String> headers = passInfo.getHeaders();
while(passInfo.hasNextPassenger ()) {
ec.push (new KeyValueEvaluator (headers, passInfo.nextPassenger()):;
EFmail newEmail = emailTemplate.toEmail (ec);
ec.pop(); //remove evaluator that was added last
// send/save your newEmail

